Synthesis of (+)-(S)-Streptenol \mathbf{A} and Biomimetic Synthesis of (2R,4S)- and (2S,4S)-2-(Pent-3-enyl)piperidin-4-ol

by Heribert Dollt ${ }^{\text {a }}$), Peter Hammann ${ }^{\text {b }}$), and Siegfried Blechert ${ }^{\mathrm{c}}$)*

${ }^{\text {a }}$) F. Hoffmann-La Roche AG, PRPC-S, Grenzacherstr. 125, CH-4070 Basel
${ }^{\text {b }}$) Core Research Function, DI \& A, HMR Deutschland GmbH, D-65926 Frankfurt am Main
${ }^{\text {c }}$) Institut für Organische Chemie der TU Berlin, Strasse des 17. Juni 124, D-10623 Berlin

Abstract

$(+)-(S)$-Streptenol A is synthesized by coupling a 1,3-dithiane with an optically pure epoxide. The absolute configuration of $(+)-(S)$-streptenol A is thereby correlated with that of (S)-malic acid. Stereoselective reduction of an oxime that could easily be prepared from streptenol A gave the ($3 S, 5 R$)- and $(3 S, 5 S)$ aminostreptenols, and after cyclization, configurationally pure 2,4-functionalized piperidine alkaloids.

Introduction. - Product screening of metabolites found in nature is not only an essential feature in the area of pharmacological research, but it is also a valuable tool to enlarge the kit of building blocks for organic syntheses. Nature is thereby very often an exciting guide in synthesis. After a biosynthetic pathway is clarified, it is one of the most challenging fields of interest to find analogous procedures in the laboratory and to transfer them to new synthetic problems in an ensuing step. The secondary metabolite streptenol A (Scheme 1) is one of the four known streptenols with antitumor activity and the ability to inhibit the cholesterol biosynthesis and to act as an immunostimulator

Scheme 1. Streptenols and Piperidine Alkaloids Obtained During a Fermentation

Streptazolin
[1]. The streptenols are produced by Streptomyces luteogriseus during a fermentation reaction [1b][2]. In the culture broth, these streptenols are accompanied by piperidine alkaloids and streptazoline. Feed experiments [3] have thereby shown that the streptenols are metabolized during the fermentation and are thus the biosynthetic precursors of the above-mentioned alkaloids. We describe here the asymmetric synthesis of $(+)-(S)$-streptenol A using a coupling reaction of the Seebach aldehyde dithioacetal $\mathbf{1}$ with the optically pure epoxide $\mathbf{2}$. After an N -atom was introduced, the streptenol A skeleton was cyclized, and the piperidine alkaloids were obtained like it is demonstrated by nature.

Results and Discussion. - (S)-Streptenol A. The transetherification product from ethyl vinyl ether and but-3-en-2-ol was rearranged to the aldehyde $\mathbf{3}$ needed for the 'Umpolung' [4] (Scheme 2). (E)-Selectivity was thereby granted by the six-membered

Scheme 2. a) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, molecular sieves $4 \AA, 0^{\circ}, 1.5 \mathrm{~h}$. b) 1, BuLi, THF, $-15^{\circ}, 3 \mathrm{~h}$; then $+\mathbf{8}, 0^{\circ}, 7$ days. c) MeOH , r.t., 24 h. d) THF, r.t., 5 min .

transition state that is passed during the 3,3-sigmatropic rearrangement and that prefers a chair configuration, in which the Me group takes the energetically favorable equatorial position. Treatment of $\mathbf{3}$ with propane-1,3-dithiol in the presence of boron trifluoride etherate led finally to the 1,3-dithiane $\mathbf{1}$ as a mixture of diastereoisomers. The absolute configuration of the epoxide $\mathbf{2}$, needed as the coupling partner for the 1,3dithiane 1, was taken from the chiral pool. Total reduction of (S)-malic acid (4) resulted in butan-1,2,4-triol 5 [5] which could be transformed into a suitable epoxide for the streptenol synthesis according to a procedure by Di Fabio [6]. In a regioselective tritylation ($\rightarrow \mathbf{6 a}$) followed by a tosylation, a mixture of the products $\mathbf{6 b}$ was obtained. This regioisomer mixture was treated with potassium carbonate, yielding the desired epoxide $\mathbf{8}$ from one regioisomer besides the unreacted tosylated regioisomers $\mathbf{7}$ which were finally separated from $\mathbf{8}$ chromatographically. Thus, purification of $\mathbf{6 a , b}$ during the reaction sequence was not necessary.

Known procedures were first used ($-20^{\circ}, 12 \mathrm{~h}$) [7] for the ring-opening reaction of $\mathbf{8}$ with deprotonated $\mathbf{1}$. However, it turned out that the epoxide $\mathbf{8}$ was inert under these conditions which is certainly due to the steric hindrance caused by the bulky trityl group. To force the reaction a little bit more, the temperature was increased, but only up to 0° because of the known fact that solutions of deprotonated 1,3-dithianes are stable only for a very short time at a higher temperature [8]. The optimal conditions were found when deprotonated $\mathbf{1}$ was stirred with $\mathbf{8}$ at 0° for one week yielding 56% of the coupling product $\mathbf{9}$, while 38% of the epoxide $\mathbf{8}$ and 26% of the dithiane $\mathbf{1}$ could be isolated unchanged. Subsequent acid-catalyzed (TosOH) detritylation of 9 gave the thioketale $\mathbf{1 0}$ of streptenol A , and desulfuration was achieved by means of HgClO_{4}. $3 \mathrm{H}_{2} \mathrm{O}$, to profit from the described advantages [9][10] of this system, rather than by means of the classical reagent $\mathrm{HgO} / \mathrm{HgCl}$. Thus, after 5 min stirring of $\mathbf{1 0}$ with a solution of $\mathrm{HgClO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in $\mathrm{THF} / \mathrm{CHCl}_{3}$ at room temperature, the thioketal cleavage was complete. The target streptenol A had to be removed from the mercury slurry very quickly and completely since the presence of mercury traces caused the destruction of the product after a few days, even at low temperature. The isolated streptenol A showed identical spectroscopic data and optical rotation as the natural product from streptomycetes (see [11]). Thus the absolute configuration of streptenol A was correlated with (S)-malic acid.

Stereoselective Amination of (S)-Streptenol A. The classical one-pot procedure [12] of imine formation and reduction failed when applied to (S)-streptenol A, giving only poor yields of aminostreptenol and streptenol B as the main product instead. Therefore, we used the (E) - and (Z) - O-benzyloximes 11a,b of (S)-streptenol A, which were obtained in high yield on treatment with O-benzylhydroxylamine hydrochloride in pyridine and could be separated chromatographically (Scheme 3). Because the (E)and (Z)-oximes may lead to a different stereochemistry on oxime reduction, it was important to establish their double-bond configuration. This was successfully done by C,H-COSY NMR experiments. It is known that $\mathrm{C}(\alpha)(Z)$ to the O -atom appears at higher field than the $\mathrm{C}(\alpha)(E)$ to the O-atom does [13]. The less polar oxime showed at 36.9 ppm a CH_{2} group that possesses a C, H correlation to the $d d$ of the $\mathrm{CH}_{2}(\alpha)$ protons, and the more polar one a correlation between the $\mathrm{CH}_{2}(\alpha)$ proton and a CH_{2} group at 41.3 ppm ; thus, the less polar material is the (Z)-oxime $\mathbf{1 1 b}$.

Scheme 3. Stereoselective Reduction of the Oximes of (S)-Streptenol A

With different reduction methods, it was found in general that the (E)-oxime 11a was reduced under milder conditions faster and smoother than the (Z)-oxime 11b (see Table 1). LiAlH_{4} gave the aminostreptenols in a one-step procedure; however, d.e. values were not satisfying, and an elevated temperature was necessary, especially for the (Z)-oxime. To increase the selectivity, the oxime was activated in acidified solutions while the reaction temperature was kept low. Efficient reducing agents under acid conditions were NaCNBH_{3} and TABH (tetramethylammonium triacetoxyboronhydride). High d.e. values, fast reaction times, and high yields are reported [14] for the resulting (R) - or (S)-configured secondary hydroxylamines. However, again the oximes $\mathbf{1 1}$ of streptenol A reacted much slower than the examples reported in the literature (see Table 1). Finally, the obtained hydroxylamines 12a,b were reduced further with LiAlH_{4}, and chromatographic workup gave the pure aminostreptenols 13a,b.

Table 1. Conditions for the Reduction of the Oximes $\mathbf{1 1}$

	Reagent	Solvent	Temp $\left[{ }^{\circ} \mathrm{C}\right]$	Time $[\mathrm{h}]$	Ratio 12a/12b	Yield $[\%]$
11a (E)	LiAlH_{4}	THF	-60 to +20	12	$39: 61$	67
11b (Z)	LiAlH_{4}	THF	+50	72	$50: 50$	31
11a (E)	$\left.\mathrm{TABH}^{\mathrm{a}}\right)$	$\mathrm{MeCN} / \mathrm{HOAc}$	-15	5	$66: 34$	50
11b (Z)	$\left.\mathrm{TABH}^{\mathrm{a}}\right)$	$\mathrm{MeCN} / \mathrm{HOAc}$	-15	5	$30: 70$	50
11a (E)	NaCNBH_{3}	MeCN/HOAc	-20	60	$81: 19$	98
11b (Z)	NaCNBH_{3}	$\mathrm{MeCN} / \mathrm{HOAc}$	-20	108	$50: 50$	92

) $\mathrm{TABH}=$ Tetramethylammonium triacetoxyboronhydride.

Absolute Configuration of the Aminostreptenols 13a,b. The less polar aminostreptenol 13a was transformed into the cyclic carbamate 14 on reaction with $1,1^{\prime}-$ carbonylbis[1 H -imidazole]. The ${ }^{1} \mathrm{H}$-NMR data of the latter established its $(4 R, 6 R)$ configuration, which was also supported by PM3 calculations (see Fig.).

Figure. PM3-Optimized conformations of the (4R, 6 R)- and (4S, 6 R)-carbamates $\mathbf{1 4}$ and $\mathbf{1 4}^{\prime}$, respectively, of aminostreptenol A

Abstract

The CH_{2} protons of the ring moiety of $\mathbf{1 4}$ showed very different shifts in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (1.37 and $2.10 \mathrm{ppm})$ so that the coupling constants could be measured. Both protons exhibited a $d d d$ coupling pattern, typical for the protons at $C(5)$. Because of the anisotropy in cyclic carbamates, the axial proton at $C(5)$ of $\mathbf{1 4}$ is the one at higher field. This $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)$ showed three large coupling constants $(13.2,10.8,10.8 \mathrm{~Hz})$, which is in agreement with a ($4 R, 6 R$)-configuration for 14. Indeed, according to the PM3 calculations (see Fig.), the most comfortable conformation of the carbamate $\mathbf{1 4}$ is a slightly flat-bottomed boat with eq/eq substituents at $\mathrm{C}(4)$ and $\mathrm{C}(6)$. The dihedral angle between both protons at the substituted centers and $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)$ is 178.5° and -161.3°. Because of the additional geminal coupling, $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)$ of $\mathbf{1 4}$ should show three large coupling constants which is in accord with the ${ }^{1} \mathrm{H}$-NMR experiment. For the ($4 S, 6 R$)-carbamate $\mathbf{1 4}^{\prime}$, the calculations suggest a twist-boat conformation with eq/ax substituents in which only the protons at $C(6)$ and $C(5)$ exhibit a great dihedral angle $\left(162.7^{\circ}\right)$; therefore, $\mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)$ of $\mathbf{1 4}$ would show only two large coupling constants in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$.

Piperidine Alkaloids. A leaving group at the primary OH group of the aminostreptenols $\mathbf{1 3}$ should allow an intramolecular cyclization involving the nucleophilic N atom; thereby, the relative configuration of the aminostreptenols should be preserved in the resulting piperidine. For this purpose, the aminostreptenols $\mathbf{1 3}$ were mesylated. This could be achieved stepwise in the sequence NH_{2}, primary $\mathrm{OH}(\rightarrow \mathbf{1 5})$, and secondary OH group $(\rightarrow \mathbf{1 6}$; Scheme 4). However, better yields and smoother reactions were obtained on total mesylation of $\mathbf{1 3}$. Treatment of the resulting trimesyl derivatives 16 with 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) gave the cyclization products 17. Using the same conditions for the dimesyl derivatives $\mathbf{1 5}$, the piperidinols

Scheme 4. Biomimetic Synthesis of Piperidine Alkaloids. The formulae of the \mathbf{b} series are shown.

18 were formed directly. Finally, the natural products 19 were obtained after reduction with SMAH (sodium methoxy(ethoxy)aluminum hydride) which could be performed stepwise starting with 17: At 50°, only the O-mesyl group was reduced $(\rightarrow \mathbf{1 8})$, and at 140° also the N-mesyl group was removed.

The coupling constants in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra could be used to determine different conformations of the piperidines $\mathbf{1 7 - 1 9}$, which were a consequence of their different sterically demanding substituents. The results are listed in Table 2.

Table 2. Coupling Constants and Conformations of the Piperidines 17-19

	$J(\mathrm{H}, \mathrm{H})[\mathrm{Hz}]$	Position ${ }^{\text {a }}$	Conformation
$\mathbf{1 7 a}(2 R, 4 S)$	$\mathrm{H}-\mathrm{C}(2): 5.0,5.5,<6.0$	ax $\mathrm{R}-\mathrm{C}(2)$	chair
	$\mathrm{H}-\mathrm{C}(4): 4.5,4.5,11.5,11.5$	eq MesO	
$\mathbf{1 8 a}(2 R, 4 S)$	$\mathrm{H}-\mathrm{C}(2): 4.5,4.5,11.3,11.3$	eq $\mathrm{R}-\mathrm{C}(2)$	chair
$\mathbf{1 9 a}(2 R, 4 S)$	$\mathrm{H}-\mathrm{C}(4): 6.2,6.2,6.2,6.2$	ax OH	
	$\mathrm{H}-\mathrm{C}(2): 2.8,6.4,6.4,10.0$	eq $\mathrm{R}-\mathrm{C}(2)$	chair
$\mathbf{1 7 b}(2 S, 4 S)$	$\mathrm{H}-\mathrm{C}(4): 3.1,3.1,3.1,3.1$	ax OH	
	$\mathrm{H}-\mathrm{C}(2): 6.9,6.9,6.9,6.9$	ax $\mathrm{R}-\mathrm{C}(2)$	chair
$\mathbf{1 8 b}(2 S, 4 S)$	$\mathrm{H}-\mathrm{C}(4): 3.0,3.0,3.0,3.0$	ax MesO	twist-boat
	$\mathrm{H}-\mathrm{C}(2): 5.5,5.5,5.5,<5.5$	ax $\mathrm{R}-\mathrm{C}(2)$	
$\mathbf{1 9 b}(2 S, 4 S)$	$\mathrm{H}-\mathrm{C}(4): 4.5,4.5,<6.0,12.0$	eq OH	chair
	$\mathrm{H}-\mathrm{C}(2): 2.4,7.2,7.2,12.0$	ax $\mathrm{R}-\mathrm{C}(2)$	

[^0]
Experimental Part

General. For molecular calculations, the program package SPARTAN Vers. 2.0. from Wavefunction Inc., Irvine, USA, was used. All solvents were freshly distilled and dried by using standard methods. Column chromatography (CC): silica gel ($0.03-0.06 \mathrm{~mm}$) from Baker. TLC: foils (silica gel $60 F 254,0.2 \mathrm{~mm}$) from Merck. Optical rotations: Perkin-Elmer-141 polarimeter. IR Spectra: Perkin-Elmer-881: rel. intensities are given. NMR Spectra: Bruker AC200 and AM400 at 200 and 400 MHz , resp. for ${ }^{1} \mathrm{H}$; Bruker AM270 and AM400 for ${ }^{13} \mathrm{C}$ and DEPT; δ in ppm rel. to the internal standard SiMe_{4}, coupling constants J in Hz; the J of higher spin systems were verified by simulation techniques; isomer ratios of diastereoisomer mixtures were derived from suitable NMR integrals. GC/MS analysis: HP $58901 I$ with $M S D 5971$ A and a CP-Sil $5 C B$ column (12.5 m , $0.2 \mathrm{~mm}, 0.33 \mu \mathrm{~m}$ film); carrier gas He ; the starting temp. 45° for 4 min , then temp. increase with a rate of $8^{\circ} / \mathrm{min}$, end temp. 125°; peak intensities are given. Mass spectra: Variant MAT 711, ionization potential 70 eV . Microanalyses: elemental analyzer 1106 Carlo Erba.

2-[(E)-Pent-3-enyl]-1,3-dithiane (1). At 0°, propane-1,3-dithiol ($714 \mathrm{mg}, 6.6 \mathrm{mmol}$) was added to $\mathbf{3}(500 \mathrm{mg}$, 5.1 mmol) and $4-\AA$ molecular sieves (250 mg) in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ under Ar. The slow addition of $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ $(1.283 \mathrm{ml}, 10.2 \mathrm{mmol})$ followed, and the mixture was stirred for 1.5 h . It was quenched with sat. NaHCO_{3} soln. $(12 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The extract was washed with sat. NaHCO_{3} and sat. NaCl soln., dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Bulb-to-bulb distillation of the residue at $85^{\circ} / 1.5 \mathrm{mbar}$ yielded $549 \mathrm{mg}(57 \%)$ of 1. Colorless liquid. R_{f} (petroleum ether/ $/ \mathrm{BuOMe} 10: 1$) 0.55. IR $\left(\mathrm{CHCl}_{3}\right): 3020$ (45.3), 2964 (45.7), 2905 (52.8), 1425 (57.3), 1262 (17.0), 1205 (54.6), 1098 (16.8), 1028 (17.9), 968 (54.4), 720 (0.0). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.33\left(d d d d, J=6,1.5,1.5,1.5,6 \mathrm{H}, \mathrm{Me}\left(5^{\prime}\right)\right) ; 1.80\left(d t, J=7,7,4 \mathrm{H}, \mathrm{CH}_{2}\left(1^{\prime}\right)\right) ; 1.87(d m, J=14,2 \mathrm{H}$, $1 \mathrm{H}-\mathrm{C}(5)) ; 2.12(d m, J=14,2 \mathrm{H}, 1 \mathrm{H}-\mathrm{C}(5)) ; 2.19\left(d d d q t, J=7,7,7,1.5,1,2 \mathrm{H}, \mathrm{CH}_{2}\left(2^{\prime}\right)^{1}\right) ; 2.26(d d d m, J=7$, $\left.\left.7,7,2 \mathrm{H}, \mathrm{CH}_{2}\left(2^{\prime}\right)\right) ; 2.79-2.91\left(m, 8 \mathrm{H}, \mathrm{CH}_{2}(4), \mathrm{CH}_{2}(6)\right) ; 4.02(t, J=7,1 \mathrm{H}-\mathrm{C}(2))^{1}\right) ; 4.04(t, J=7,1 \mathrm{H}-\mathrm{C}(2))$; $5.39\left(d t q, J=15,7,1.5,2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.49\left(d q t, J=15,6,1,2 \mathrm{H}, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 12.6$, 17.8^{1}) ($q, \mathrm{C}\left(5^{\prime}\right)$); 23.7, 25.8 ${ }^{1}$) ($t, \mathrm{C}\left(2^{\prime}\right)$); $\left.\left.25.8(t, 2 \mathrm{C}(5)) ; 30.08^{1}\right), 30.12(t, 2 \mathrm{C}(4), 2 \mathrm{C}(6)) ; 34.96,34.99^{1}\right)$ $\left.\left.\left.\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 46.5^{1}\right), 46.7(d, \mathrm{C}(2)) ; 125.1,125.9^{1}\right)\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 128.6,129.4^{1}\right)\left(d, \mathrm{C}\left(3^{\prime}\right)\right) . \mathrm{GC} / \mathrm{MS}: t_{\mathrm{R}} 14.448 \mathrm{~min} ; 188$ $\left(56, M^{+}\right), 133\left(26,\left[M-\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}\right), 119\left(100,\left[133-\mathrm{CH}_{2}\right]^{+}\right), 106\left(24,[119-\mathrm{CH}]^{+}, \mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}^{+}\right), 55\left(16, \mathrm{C}_{4} \mathrm{H}_{7}^{+}\right) . \mathrm{HR}-$ MS: $188.0694\left(\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{~S}_{2}^{+}\right.$; calc. 188.0693)
(+)-(2S)-1-\{2-[(E)-Pent-3-enyl]-1,3-dithian-2-yl\}-4-(trityloxy)butan-2-ol (9). At $-40^{\circ}, 1.6 \mathrm{~m} \mathrm{BuLi}$ (1 ml) was added very slowly to a soln. of $\mathbf{1}(276 \mathrm{mg}, 1.47 \mathrm{mmol})$ in anh. THF $(10 \mathrm{ml})$. Then it was stirred for 3 h at -15°. After cooling to -20°, a soln. of $\mathbf{8}(486 \mathrm{mg}, 1.47 \mathrm{mmol})$ in anh. THF (2 ml) was added dropwise. The mixture was warmed to 0° and stirred for a week. Addition of sat. $\mathrm{NH}_{4} \mathrm{Cl}$ soln. (30 ml), extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, drying $\left(\mathrm{MgSO}_{4}\right)$ of the org. layer, and evaporation gave a residue which was purified by CC (silica gel, petroleum ether/'BuOMe $20: 1$, then $10: 1$, and finally $2: 1$): recycled $\mathbf{1}(26 \%)$ and $\mathbf{8}(38 \%)$, and $9(430 \mathrm{mg}$ $56 \%)$. Slightly yellow solid. R_{f} (petroleum ether/ $/ \mathrm{BuOMe} 2: 1$) $0.28 .[\alpha]_{\mathrm{D}}=+7.6\left(c=1.16, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $\left(\mathrm{CHCl}_{3}\right): 3483$ (76.4), 3017 (33.1), $2934(30.8), 1450(28.6), 1228(16.7), 1076(0.0), 1034(21.4), 708(3.4), 674$ (53.1), 633 (50.3). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.64\left(d, J=5, \mathrm{Me}\left(5^{\prime \prime}\right)\right) ; 1.68-1.78\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.80-2.12$ $\left(m, 1 \mathrm{H}-\mathrm{C}(1), \mathrm{CH}_{2}\left(1^{\prime \prime}\right), \mathrm{CH}_{2}\left(2^{\prime \prime}\right), \mathrm{CH}_{2}(3), 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 2.28(d d, J=15,9,1 \mathrm{H}-\mathrm{C}(1)) ; 2.74-2.82(d d d, J=$ $\left.14.5,6.5,3, \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(4^{\prime}\right), \mathrm{H}_{\mathrm{eq}}-\mathrm{C}\left(6^{\prime}\right)\right) ; 2.88$, 2.95 (each $\left.d d d, J=14.5,9.5,3, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime}\right), \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(6^{\prime}\right)\right) ; 3.18-3.32$ $(m, 2 \mathrm{H}-\mathrm{C}(4)) ; 4.14-4.22(m, \mathrm{H}-\mathrm{C}(2)) ; 5.34-5.51\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) ; 7.20-7.33(m, 9$ arom. H$) ; 7.44$ $\left(d d, J=8,1,6\right.$ arom. H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.9\left(q, \mathrm{C}\left(5^{\prime \prime}\right)\right) ; 25.0\left(t, \mathrm{C}\left(5^{\prime}\right)\right) ; 26.0,26.3\left(t, \mathrm{C}\left(4^{\prime}\right)\right.$, $\left.\mathrm{C}\left(6^{\prime}\right)\right) ; 27.2\left(t, \mathrm{C}\left(2^{\prime \prime}\right)\right) ; 38.0\left(t, \mathrm{C}\left(1^{\prime \prime}\right)\right) ; 39.5(t, \mathrm{C}(3)) ; 44.7(t, \mathrm{C}(1)) ; 52.0\left(s, \mathrm{C}\left(2^{\prime}\right)\right) ; 61.0(t, \mathrm{C}(4)) ; 66.7$ ($\left.d, \mathrm{C}(2)\right)$; $86.8\left(s, \mathrm{Ph}_{3} C\right) ; 125.6\left(d, \mathrm{C}\left(4^{\prime \prime}\right)\right) ; 126.9\left(d, 3 \mathrm{C}_{p}\right) ; 127.8\left(d, 6 \mathrm{C}_{o}\right) ; 128.8\left(d, 6 \mathrm{C}_{m}\right) ; 130.1\left(d, \mathrm{C}\left(3^{\prime \prime}\right)\right) ; 144.1\left(s, 3 \mathrm{C}_{i p s o}\right)$. MS (170 ${ }^{\circ}$) $518\left(1, M^{+}\right), 463\left(6,\left[M-\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}, 275\left(38,[\mathrm{M}-\mathrm{Tr}]^{+}\right), 243\left(100, \mathrm{Tr}^{+}\right), 187\left(18,\left[275-\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}\right]^{+}\right), 55\right.$ (4, $\mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}$). HR-MS: $518.2313\left(\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~S}_{2}^{+}\right.$; calc. 518.2313). Anal. calc. for $\mathrm{C}_{32} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{~S}_{2}: \mathrm{C} 74.09$, H 7.38 ; found: C 73.77, H 6.72
$(+)-(2 \mathrm{~S})-4-\{2-[(\mathrm{E})$-Pent-3-enyl $]-1,3-$ dithian-2-ylfbutane-1,3-diol (10). A soln. of $9(420 \mathrm{mg}, 0.8 \mathrm{mmol})$ in $\mathrm{MeOH}(42 \mathrm{ml})$ and $\mathrm{TsOH}(84 \mathrm{mg}, 0.5 \mathrm{mmol})$ were stirred at r.t. for 24 h . Evaporation, CC (petroleum ether/ $\left.{ }^{t} \mathrm{BuOME} 1: 2\right)$ of the residue yielded $\mathbf{1 0}(89 \mathrm{mg}, 40 \%)$. Colorless oil. $[\alpha]_{\mathrm{D}}=+15.4\left(c=1.78, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) . R_{\mathrm{f}}$ (petroleum ether/'BuOME 1: 2) 0.35. IR $\left(\mathrm{CHCl}_{3}\right): 3624(72.6), 3449(45.5), 3017(0.0), 3011(10.7), 2944(7.8)$, 1441 (25.2), 1427 (18.9), 1418 (25.9), 1206 (0.3), 1071 (0.0), 968 (33.9), 718 (56.0). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 MHz , $\left.\mathrm{CDCl}_{3}\right): 1.60-1.70\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.66\left(d d, J=6.5,1.5, \mathrm{Me}\left(5^{\prime \prime}\right)\right) ; 1.73-1.83\left(m, 1 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.86-1.98$ $\left(m, \mathrm{CH}_{2}\left(1^{\prime \prime}\right), 1 \mathrm{H}-\mathrm{C}(2)\right) ; 1.98-2.16\left(m, \mathrm{CH}_{2}\left(2^{\prime \prime}\right), 1 \mathrm{H}-\mathrm{C}(2)\right) ; 2.16-2.34(m, 1 \mathrm{H}-\mathrm{C}(4)) ; 2.41(d d, J=15.5$, $9.5,1 \mathrm{H}-\mathrm{C}(4)) ; 2.75-2.88\left(m, \mathrm{H}-\mathrm{C}\left(4^{\prime}\right), \mathrm{H}-\mathrm{C}\left(6^{\prime}\right), \mathrm{OH}\right) ; 2.96,3.01$ (each $d d d, J=14.5,9.5,3.5, \mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(4^{\prime}\right)$,

[^1]$\left.\mathrm{H}_{\mathrm{ax}}-\mathrm{C}\left(6^{\prime}\right)\right) ; 3.80-3.86(m, 2 \mathrm{H}-\mathrm{C}(1)) ; 3.90(d, J=1, \mathrm{OH}) ; 4.21-4.32(m, \mathrm{H}-\mathrm{C}(3)) ; 5.35-5.54\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right)\right.$, $\left.\mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right)$) ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.9\left(q, \mathrm{C}\left(5^{\prime \prime}\right)\right) ; 24.8\left(t, \mathrm{C}\left(5^{\prime}\right)\right) ; 26.0,26.3\left(t, \mathrm{C}\left(4^{\prime}\right), \mathrm{C}\left(6^{\prime}\right)\right) ; 27.2$ $\left(t, \mathrm{C}\left(2^{\prime \prime}\right)\right) ; 39.1\left(t, \mathrm{C}\left(1^{\prime \prime}\right)\right) ; 39.6(t, \mathrm{C}(2)) ; 44.8(t, \mathrm{C}(4)) ; 51.8\left(s, \mathrm{C}\left(2^{\prime}\right)\right) ; 61.2(t, \mathrm{C}(1)) ; 68.7$ (d, C(3)); 125.8 $\left(d, \mathrm{C}\left(4^{\prime \prime}\right)\right) ; 130.0\left(d, \mathrm{C}\left(3^{\prime \prime}\right)\right) . \mathrm{MS}\left(240^{\circ}\right): 276\left(21, M^{+}\right), 221\left(30,\left[M-\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}\right), 201\left(29,\left[M-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}\right]^{+}\right), 187$ (36, [201- $\left.\left.\mathrm{CH}_{2}\right]^{+}\right), 169\left(18,\left[M-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~S}_{2}\right]^{+}\right), 151\left(57,\left[169-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 107\left(54, \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~S}_{2}^{+}\right), 95\left(65,\left[M-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{~S}_{2}-\right.\right.$ $\left.\left.\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}\right]^{+}\right), 75\left(39, \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{2}^{+}\right), 69\left(22, \mathrm{C}_{5} \mathrm{H}_{9}{ }^{+}\right), 55\left(100, \mathrm{C}_{4} \mathrm{H}_{7}^{+}\right) . \mathrm{HR}-\mathrm{MS}: 276.1218\left(\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{~S}_{2}^{+}\right.$; calc. 276.1218) .
(S)-Streptenol $A(=(3 \mathrm{~S}, 8 \mathrm{E})$-1,3-Dihydroxydec-8-en-5-one). To a soln. of $\mathbf{1 0}(104 \mathrm{mg}, 0.37 \mathrm{mmol})$ in THF/ $\mathrm{CHCl}_{3} 2: 5(7 \mathrm{ml}), \mathrm{Hg}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(367 \mathrm{mg}, 0.8 \mathrm{mmol})$ in THF $(6 \mathrm{ml})$ was added slowly and then stirred for 5 min at r.t. The mixture was neutralized with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3} \mathrm{soln}$. and extracted with CHCl_{3}, the org. layer washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, evaporated, and the residue purified by CC (silica gel, ${ }^{\mathrm{B}} \mathrm{BuOMe}$ /petroleum ether $3: 1) ; 39 \mathrm{mg}(57 \%)$ of (S)-streptenol A. R_{f} (AcOEt/hexane $\left.4: 1\right) 0.56 .[\alpha]_{\mathrm{D}}=+23.0\left(c=1.05, \mathrm{CHCl}_{3}\right)$ ([11]: $\left.[\alpha]_{\mathrm{D}}=+23.0\left(c=1.05, \mathrm{CHCl}_{3}\right)\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.64(d d, J=1.0,5.5, \mathrm{Me}(10)) ; 1.76(d d d m, J=$ $6.5,6.5,6.5,2 \mathrm{H}-\mathrm{C}(2)) ; 2.26(d d d m, J=7.0,7.0,7.0,2 \mathrm{H}-\mathrm{C}(7)) ; 2.50(t, 7.0,2 \mathrm{H}-\mathrm{C}(6)) ; 2.60(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(4))$; 4.10-4.30 ($m, 2 \mathrm{H}-\mathrm{C}(1), \mathrm{H}-\mathrm{C}(3))$; $5.52-5.34(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: 17.7 ($q, \mathrm{C}(10)$); $26.4(t, \mathrm{C}(7)) ; 37.8(t, \mathrm{C}(2)) ; 43.2(t, \mathrm{C}(6)) ; 49.2(t, \mathrm{C}(4)) ; 60.5(t, \mathrm{C}(1)) ; 67.1(d, \mathrm{C}(3))$; $126.0(d, \mathrm{C}(9)) ; 129.1(d, \mathrm{C}(8)) ; 211.2(s, \mathrm{C}(5))$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{3}$: $\mathrm{C} 64.49, \mathrm{H} 9.74$; found: C 64.76 , H 9.19.
$(+)-(3 \mathrm{R}, 5 \mathrm{E}, 8 \mathrm{E})-$ and $(+)-(3 \mathrm{R}, 5 \mathrm{Z}, 8 \mathrm{E})-1,3$-Dihydroxydec-8-en-5-one O-Benzyloxime (11a and 11b, resp.). To a mixture of O-benzylhydroxylamin hydrochloride ($840 \mathrm{mg}, 5.3 \mathrm{mmol}$) and pyridine (1.8 ml) in anh. THF $(3 \mathrm{ml})$, a soln. of (S)-streptenol A $(600 \mathrm{mg}, 3.2 \mathrm{mmol})$ in anh. THF $(0.2 \mathrm{ml})$ was added dropwise. The mixture was stirred for 20 h at r.t. $\mathrm{H}_{2} \mathrm{O}$ was added, the mixture extracted with AcOEt , the extract dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue purified by CC (petroleum ether/'BuOMe 2:1): $891 \mathrm{mg}(95 \%)$ of slightly yellow oil. Separation of the (Z) - and (E)-isomer was easily achieved by CC.

Data of 11a: $R_{\mathrm{f}}(\mathrm{AcOEt} /$ hexane $/ \mathrm{MeOH} 1: 1: 0.2) 0.76 .[\alpha]_{\mathrm{D}}=+11.4(c=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.64(d d, J=1.0,6.0,3 \mathrm{H}-\mathrm{C}(10)) ; 1.60-1.98(m, 2 \mathrm{H}-\mathrm{C}(2)) ; 2.12-2.21(m, 2 \mathrm{H}-\mathrm{C}(7)) ; 2.28(d, J=$ $3.0,1 \mathrm{H}-\mathrm{C}(4))$; $2.32(d, J=9.0,1 \mathrm{H}-\mathrm{C}(4)) ; 2.37$ ($t, J=8.0,2 \mathrm{H}-\mathrm{C}(6)) ; 3.78-3.84(m, 2 \mathrm{H}-\mathrm{C}(1)) ; 4.38$ (dddd, $J=3.0,3.0,9.0,9.0,1 \mathrm{H}-\mathrm{C}(3)) ; 5.06,5.07\left(s, \mathrm{PhCH}_{2}\right) ; 5.32-5.48(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) ; 7.26-7.38$ $\left(m, 2 \mathrm{H}_{o}, 2 \mathrm{H}_{m}, \mathrm{H}_{p}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.8(q, \mathrm{C}(10)) ; 28.4(t, \mathrm{C}(6)) ; 29.4(t, \mathrm{C}(7)) ; 37.8(t, \mathrm{C}(2))$; $41.3(t, \mathrm{C}(4)) ; 61.1(t, \mathrm{C}(1)) ; 68.4(d, \mathrm{C}(3)) ; 75.6\left(t, \mathrm{PhCH}_{2}\right) ; 125.9(d, \mathrm{C}(9)) ; 127.7\left(d, \mathrm{C}_{p}\right) ; 127.9\left(d, 2 \mathrm{C}_{o}\right) ; 128.3$ $\left(d, 2 \mathrm{C}_{m}\right) ; 129.6(d, \mathrm{C}(8)) ; 137.9\left(s, \mathrm{C}_{i p s o}\right) ; 160.0(s, \mathrm{C}(5))$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C} 69.29, \mathrm{H} 8.36$; found: C 69.27, H 8.34 .

Data of 11b: $R_{\mathrm{f}}\left(\right.$ AcOEt/hexane/MeOH 1:1:0.2) $0.85 .[\alpha]_{\mathrm{D}}=+21(c=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, CDCl_{3}) : 1.64 ($d, J=6.0,3 \mathrm{H}-\mathrm{C}(10)$); 1.66-1.74 ($m, 2 \mathrm{H}-\mathrm{C}(2)$); 2.16-2.26 ($m, 2 \mathrm{H}-\mathrm{C}(7)$); 2.26-2.32 $(m, 2 \mathrm{H}-\mathrm{C}(6)) ; 2.40 \quad(d d, J=4.0, \quad 13.0, \quad 1 \mathrm{H}-\mathrm{C}(4)) ; 2.68 \quad(d d, J=8.0,13.0,1 \mathrm{H}-\mathrm{C}(4)) ; 3.74-3.87$ $(m, 2 \mathrm{H}-\mathrm{C}(1)) ; 4.14(d d m, J=4.0,8.0,1 \mathrm{H}-\mathrm{C}(3)) ; 5.08\left(s, \mathrm{PhCH}_{2}\right) ; 5.34-5.51(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9))$; $7.26-7.40\left(m, 2 \mathrm{H}_{o}, 2 \mathrm{H}_{m}, \mathrm{H}_{p}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.8(q, \mathrm{C}(10)) ; 29.2(t, \mathrm{C}(7)) ; 35.2(t, \mathrm{C}(6)) ; 36.9$ $(t, \mathrm{C}(4)) ; 38.8(t, \mathrm{C}(2)) ; 60.9(t, \mathrm{C}(1)) ; 69.3(d, \mathrm{C}(3)) ; 75.5\left(t, \mathrm{PhCH}_{2}\right) ; 125.7(d, \mathrm{C}(9)) ; 127.7\left(d, \mathrm{C}_{p}\right) ; 128.0$ $\left(d, 2 \mathrm{C}_{o}\right) ; 128.3\left(d, 2 \mathrm{C}_{m}\right) ; 129.7(d, \mathrm{C}(8)) ; 137.6\left(s, \mathrm{C}_{i p s o}\right) ; 158.8(s, \mathrm{C}(5))$. Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3}: \mathrm{C} 69.29$, H 8.36; found: C 69.21, H 8.37.
$(3 \mathrm{R}, 5 \mathrm{R}, 8 \mathrm{E})$ - and ($3 \mathrm{R}, 5 \mathrm{~S}, 8 \mathrm{E}$)-5-[(Benzyloxy)amino]dec-8-ene-1,3-diol (12a and 12b, resp.). The preparation of $\mathbf{1 2}$ gave best diastereoselectivities following the procedures below. Starting with $\mathbf{1 1 b}(Z)$ a ratio $\mathbf{1 2 b} / \mathbf{1 2 a}$ of $70: 30$ was obtained if $\mathbf{1 1 b}$ was added dropwise at -15° to a suspension of 10 equiv. of TABH in $\mathrm{AcOH} /$ $\operatorname{MeCN} 1: 1$. The mixture was stirred for 5 h , sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln. added, and the mixture extracted with AcOEt. Purification by CC (petroleum ether/'BuOMe 1:2) yielded 50% of a colorless oil.

Starting with 11a (E) a ratio 12a/12b of $81: 19$ was obtained if 11a was treated with 10 equiv. of NaCNBH_{3} for 60 h at -20° in $\mathrm{AcOH} / \mathrm{MeCN} 1: 1$. Yield 98\%. $R_{\mathrm{f}}\left({ }^{(} \mathrm{BuOMe}\right) 0.29$. IR $\left(\mathrm{CHCl}_{3}\right): 3624$ (85.0), 3015 (11.5), 2939 (0.0), 2857 (21.1), 1455 (12.7), 1439 (18.2), 1365 (37.4), 1205 (45.7), 1074 (15.5) 969 (8.0), 909 (25.9), 700 (6.4). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.65(d, J=5,6 \mathrm{H}-\mathrm{C}(10)) ; 1.34-1.86(m, 4 \mathrm{H}-\mathrm{C}(2), 4 \mathrm{H}-\mathrm{C}(4)$, $4 \mathrm{H}-\mathrm{C}(6)) ; 1.94-2.08(m, 4 \mathrm{H}-\mathrm{C}(7))$) 3.00 ($\left.d d d d, J=6.5,6.5,6.5,6.5, \mathrm{H}-\mathrm{C}(5)) ; 3.18^{1}\right)(d d d d, J=7,7,7,3$, $\left.\mathrm{H}-\mathrm{C}(5)) ; 3.76-3.90(m, 4 \mathrm{H}-\mathrm{C}(1)) ; 3.96(d d d d, J=6,6,6,6, \mathrm{H}-\mathrm{C}(3)) ; 4.10^{1}\right)(d d d d, J=9,9,3,3, \mathrm{H}-\mathrm{C}(3)) ;$ 4.64-4.76 (m, PhCH_{2}); 5.32-5.48 (dqm, overlapped, $\left.J=15,5,2 \mathrm{H}-\mathrm{C}(8), 2 \mathrm{H}-\mathrm{C}(9)\right) ; 7.24-7.41\left(m, 4 \mathrm{H}_{o}\right.$, $4 \mathrm{H}_{m}, 2 \mathrm{H}_{p}$). $\left.\left.\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.9(2 q, \mathrm{C}(10)) ; 28.6,29.2^{1}\right)(t, \mathrm{C}(7)) ; 30.8^{1}\right), 32.8(t, \mathrm{C}(6)) ; 37.4^{1}\right)$, $\left.\left.\left.\left.38.4(t, \mathrm{C}(4)) ; 38.5^{1}\right), 38.8(t, \mathrm{C}(2)) ; 57.8^{1}\right), 61.2(d, \mathrm{C}(5)) ; 61.5,61.8^{1}\right)(t, \mathrm{C}(1)) ; 69.3^{1}\right), 78.1(d, \mathrm{C}(3)) ; 76.3$, $\left.\left.\left.\left.\left.76.4^{1}\right)\left(t, \mathrm{PhCH}_{2}\right) ; 125.6,125.8^{1}\right)(d, \mathrm{C}(9)) ; 128.0,128.1^{1}\right)\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 128.45,128.5^{1}\right)\left(2 d, 2 \mathrm{C}_{o}, 2 \mathrm{C}_{m}\right) ; 130.2^{1}\right)$, $130.4(d, \mathrm{C}(8)) ; 137.2\left(2 s, \mathrm{C}_{i p s o}\right) . \mathrm{MS}\left(120^{\circ}\right): 294\left(0.25,[M+\mathrm{H}]^{+}\right), 224\left(17,\left[M-\mathrm{C}_{5} \mathrm{H}_{9}\right]^{+}\right), 91\left(100, \mathrm{Bn}^{+}\right), 77(18$,
$\left.\mathrm{C}_{6} \mathrm{H}_{5}{ }^{+}\right), 69\left(26, \mathrm{C}_{5} \mathrm{H}_{9}{ }^{+}\right), 65\left(10, \mathrm{C}_{5} \mathrm{H}_{5}{ }^{+}\right), 55\left(46, \mathrm{C}_{4} \mathrm{H}_{7}^{+}\right), 51\left(10, \mathrm{C}_{4} \mathrm{H}_{3}{ }^{+}\right)$. HR-MS: $224.1287\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{~N}^{+}\right.$; calc. 224.1287). Anal. calc. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{3}$: C 69.59, H 9.28; found: C 69.36, H 9.35.
(-)-(3R,5R,8E)- and (-)-(3R,5S,8E)-5-Aminodec-8-ene-1,3-diol (13a and 13b, resp.). Method 1: A (Z/E)oxime mixture $11(1.947 \mathrm{~g}, 6.7 \mathrm{mmol})$ in anh. THF $(17 \mathrm{ml})$ was added slowly at r.t. to a suspension of LiAlH_{4} $(1.58 \mathrm{~g}, 42 \mathrm{mmol})$ in anh. THF (22 ml). The mixture was stirred for $16 \mathrm{~h}, \mathrm{a}_{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$ soln. added carefully, and the precipitate that formed filtered. The filtrate was extracted with AcOEt and the org. layer dried (MgSO_{4}) and evaporated: 985 mg of $\mathbf{1 3 a} / \mathbf{1 3 b}(78 \%)$, suitable for further transformations without purification. The diastereoisomers could be separated by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3} 6: 1: 0.1\right)$.

Method 2: A soln. of $\mathbf{1 2 a}(93 \mathrm{mg}, 0.32 \mathrm{mmol})$ in anh. THF $(1 \mathrm{ml})$ was added at -78° to a suspension of $\mathrm{LiAlH}_{4}(50 \mathrm{mg}, 1.3 \mathrm{mmol})$ in anh. THF (1 ml) under Ar. The mixture was slowly warmed to r.t. and then refluxed for 10 h . Workup and CC as described in Method 1 yielded $46 \mathrm{mg}(77 \%)$ of $\mathbf{1 3 a}(3 R, 5 R) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\left.\mathrm{MeOH} / \mathrm{NH}_{3} \quad 90: 15: 1.5\right) \quad 0.25 .[\alpha]_{\mathrm{D}}=-15 \quad(c=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR} \quad\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.24-1.42$ $(m, 2 \mathrm{H}-\mathrm{C}(6)) ; 1.46-1.62(m, 1 \mathrm{H}-\mathrm{C}(2), 2 \mathrm{H}-\mathrm{C}(4)) ; 1.64-1.72(m, 1 \mathrm{H}-\mathrm{C}(2)) ; 1.66(d d, J=1.0,6.0$, $3 \mathrm{H}-\mathrm{C}(10)) ; 1.96-2.10(\mathrm{~m}, 2 \mathrm{H}-\mathrm{C}(7)) ; 2.88(d d d d, J=2.5,5.0,7.5,10.0, \mathrm{H}-\mathrm{C}(5)) ; 3.04-3.28$ (br., 4 H$)$); $3.78-3.86(m, 2 \mathrm{H}-\mathrm{C}(1)) ; 4.09(d d d d, J=2.0,4.0,8.0,10.0, \mathrm{H}-\mathrm{C}(3)) ; 5.34-5.50(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9))$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.7(q, \mathrm{C}(10)) ; 28.5(t, \mathrm{C}(7)) ; 39.2(t, \mathrm{C}(6)) ; 39.9(t, \mathrm{C}(2)) ; 42.1(t, \mathrm{C}(4)) ; 52.0$ $(d, \mathrm{C}(5)) ; 60.5(t, \mathrm{C}(1)) ; 72.3(d, \mathrm{C}(3)) ; 125.3(d, \mathrm{C}(9)) ; 130.3(d, \mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{C} 64.13$, H 11.38; found: C 64.09, H 11.41.

The procedure described for $\mathbf{1 3 a}$ was applied to $\mathbf{1 2 b}$ for the preparation of $\mathbf{1 3 b}(3 R, 5 S) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} /\right.$ $\left.\mathrm{NH}_{3} 90: 15: 1.5\right) 0.19 .[\alpha]_{\mathrm{D}}=-19.6(c=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.44-1.64(5 \mathrm{H}), 1.74-1.84$ $(1 \mathrm{H})(m, 2 \mathrm{H}-\mathrm{C}(2), 2 \mathrm{H}-\mathrm{C}(4), 2 \mathrm{H}-\mathrm{C}(6)) ; 1.65(d d, J=1.0,6.0,3 \mathrm{H}-\mathrm{C}(10)) ; 1.96-2.10(m, 2 \mathrm{H}-\mathrm{C}(7))$; $2.86-3.18$ (br., 4 H); 3.18 (dddd, $J=3.0,7.0,7.0,7.0, \mathrm{H}-\mathrm{C}(5)$); $3.85(t, J=6.0,2 \mathrm{H}-\mathrm{C}(1)) ; 4.18$ (dddd, $J=3.0$, $3.0,6.0,9.0, \mathrm{H}-\mathrm{C}(3)) ; 5.34-5.52(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.8(q, \mathrm{C}(10)) ; 29.1$ $(t, \mathrm{C}(7)) ; 37.3(t, \mathrm{C}(6)) ; 38.8(t, \mathrm{C}(2)) ; 41.3(t, \mathrm{C}(4)) ; 48.2(d, \mathrm{C}(5)) ; 60.8(t, \mathrm{C}(1)) ; 68.7$ ($d, \mathrm{C}(3)) ; 125.5$ (d, C(9)); $130.3(d, \mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{2}$: C 64.13, H 11.38; found: C 64.08, H 11.35.
(-)-(4R,6R)-6-(2-Hydroxyethyl)-4-[(E)-pent-3-enyl]-1,3-oxazinan-2-one (14). A soln. of 13a (99 mg, 0.53 mmol) and 1, 1^{\prime}-carbonylbis[1 H -imidazole] ($91 \mathrm{mg}, 0.56 \mathrm{mmol}$) in THF (20 ml) was stirred for 12 h . The volatile components were evaporated. Then, $\mathrm{H}_{2} \mathrm{O}(130 \mathrm{ml})$ was added, the mixture extracted with $\mathrm{AcOEt}(4 \times$ $40 \mathrm{ml})$, the org. layer dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue submitted to $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right)$; $97 \mathrm{mg}(85 \%)$ of $\mathbf{1 4}(4 R, 6 R) . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) 0.24 .[\alpha]_{\mathrm{D}}=-46.6(c=6.5 \mathrm{mg} / \mathrm{ml}, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $1.37\left(d d d, J=10.8,10.8,13.2,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)\right) ; 1.60\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime \prime}\right)\right) ; 1.63\left(m, 3 \mathrm{H}-\mathrm{C}\left(5^{\prime \prime}\right)\right)$; $1.85\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 2.05\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime \prime}\right)\right) ; 2.10\left(m\right.$, two $\left.J>9.0,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(5)\right) ; 3.50(m, \mathrm{H}-\mathrm{C}(4)) ; 3.70$ $\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 4.45(m, \mathrm{H}-\mathrm{C}(6)) ; 5.45\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime \prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime \prime}\right)\right) . \mathrm{C}, \mathrm{H}-\operatorname{COSY}\left(\mathrm{CDCl}_{3}\right): 18.0\left(q, \mathrm{C}\left(5^{\prime \prime}\right)\right) ; 29.0$ $\left(t, \mathrm{C}\left(2^{\prime \prime}\right)\right) ; 34.2(t, \mathrm{C}(5)) ; 36.8\left(t, \mathrm{C}\left(1^{\prime \prime}\right)\right) ; 39.1\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 51.5$ ($\left.d, \mathrm{C}(4)\right) ; 58.5\left(t, \mathrm{C}\left(2^{\prime}\right)\right) ; 75.9$ ($\left.d, \mathrm{C}(6)\right) ; 126.8$ $\left(d, \mathrm{C}\left(4^{\prime \prime}\right)\right) ; 131.2\left(d, \mathrm{C}\left(3^{\prime \prime}\right)\right) ; 157.3(s, \mathrm{C}(2))$. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{3}$: C61.94, H 8.98: found: C 62.92, H 9.23.
(-)-(3R,5R,8E)- and (+)-(3R,5S,8E)-Methanesulfonic Acid 3-Hydroxy-5-[(methylsulfonyl)amino]dec-8enyl Ester (15a and 15b, resp.). To 13a ($150 \mathrm{mg}, 0.8 \mathrm{mmol}$) in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}(235 \mu \mathrm{l}, 1.7 \mathrm{mmol})$ and finally $\mathrm{MesCl}(126 \mu \mathrm{l}, 1.6 \mathrm{mmol})$ were added dropwise at 0°. After 2 h stirring, the mixture was washed with NaHCO_{3} soln. and extracted with AcOEt. Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation gave a residue which was purified by $\mathrm{CC}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3} 140: 5: 1\right) .206 \mathrm{mg}(75 \%)$ of $\mathbf{1 5 a} . R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3} 90: 5: 1\right) 0.38 .[\alpha]_{\mathrm{D}}=-1.9$ $(c=8 \mathrm{mg} / \mathrm{ml}, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.52-1.70(m, 2 \mathrm{H}-\mathrm{C}(4), 2 \mathrm{H}-\mathrm{C}(6)) ; 1.66(d d, J=1.0$, $6.0,3 \mathrm{H}-\mathrm{C}(10)) ; 1.78(d d d d, J=5.0,5.0,10.0,15.0,1 \mathrm{H}-\mathrm{C}(2)) ; 1.97$ (dddd, $J=3.0,6.0,9.0,15.0,1 \mathrm{H}-\mathrm{C}(2))$; 2.04-2.12 ($m, 2 \mathrm{H}-\mathrm{C}(7)) ; 2.97\left(s, 1 \mathrm{MeSO}_{2}\right) ; 3.04\left(s, 1 \mathrm{MeSO}_{2}\right) ; 3.54(m, 1 \mathrm{H}-\mathrm{C}(5)) ; 3.97(d d m, J=3.0$, 5.0 , $1 \mathrm{H}-\mathrm{C}(3)) ; 4.34(d d d, J=5.0,9.0,9.5,1 \mathrm{H}-\mathrm{C}(1)) ; 4.46(d d d, J=6.0,9.5,10.0,1 \mathrm{H}-\mathrm{C}(1)) ; 4.94$ (m, NH); $5.35-5.53(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.9(q, \mathrm{C}(10)) ; 28.5(t, \mathrm{C}(7)) ; 35.9(t, \mathrm{C}(6))$; $36.9(t, \mathrm{C}(2)) ; 37.3\left(q, \mathrm{MeSO}_{3}\right) ; 41.7\left(q, \mathrm{MeSO}_{2} \mathrm{~N}\right) ; 42.7(t, \mathrm{C}(4)) ; 52.7(d, \mathrm{C}(5)) ; 66.1(d, \mathrm{C}(3)) ; 67.0(t, \mathrm{C}(1))$; 126.2 (d, C(9)); 129.7 (d, C(8)).

As described for 15a, 15b was obtained from 13b. $R_{\mathrm{f}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NH}_{3} 90: 5: 1\right) 0.52 .[\alpha]_{\mathrm{D}}=+7.0(c=$ $5 \mathrm{mg} / \mathrm{ml}, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 0.9-2.1(m, 2 \mathrm{H}-\mathrm{C}(2), 2 \mathrm{H}-\mathrm{C}(4), 2 \mathrm{H}-\mathrm{C}(6), 2 \mathrm{H}-\mathrm{C}(7)$, $3 \mathrm{H}-\mathrm{C}(10)) ; 3.01\left(s, \mathrm{MeSO}_{3}\right) ; 3.10\left(s, \mathrm{MeSO}_{2} \mathrm{~N}\right) ; 3.60(m, 1 \mathrm{H}-\mathrm{C}(5)) ; 3.85(m, 1 \mathrm{H}-\mathrm{C}(3)) ; 4.25(d, J=9.0$, $\mathrm{NH}) ; 4.40(m, 1 \mathrm{H}-\mathrm{C}(1)) ; 4.52(m, 1 \mathrm{H}-\mathrm{C}(1)) ; 5.95(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $17.9(q, \mathrm{C}(10)) ; 29.1(t, \mathrm{C}(7)) ; 30.5(t, \mathrm{C}(6)) ; 36.1(t, \mathrm{C}(2)) ; 37.4\left(q, \mathrm{MeSO}_{3}\right) ; 40.1(t, \mathrm{C}(4)) ; 41.7\left(q, \mathrm{MeSO}_{2} \mathrm{~N}\right)$; 51.4 ($d, \mathrm{C}(5)) ; 69.1(d, \mathrm{C}(3)) ; 67.5(t, \mathrm{C}(1)) ; 126.2(d, \mathrm{C}(9)) ; 129.8$ ($d, \mathrm{C}(8))$.
$(-)-(3 \mathrm{R}, 5 \mathrm{R}, 8 \mathrm{E})-$ and $(+)-(3 \mathrm{R}, 5 \mathrm{~S}, 8 \mathrm{E})-$ Methanesulfonic Acid 5-[(Methylsulfonyl)amino]-3-[(methylsulfo-nyl)oxy]dec-8-enyl Ester (16a and 16b, resp.). To a soln. of $\mathbf{1 3 a}(240 \mathrm{mg}, 1.28 \mathrm{mmol})$ in anh. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{ml}), \mathrm{Et}_{3} \mathrm{~N}$ $(720 \mu \mathrm{l}, 5.2 \mathrm{mmol})$ and $\mathrm{MesCl}(403 \mu \mathrm{l}, 5.1 \mathrm{mmol})$ were added at 0°. The mixture was stirred for 2 h , quenched
with sat. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ soln. and extracted with AcOEt. Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation under high vacuum yielded $505 \mathrm{mg}(94 \%)$ of 16a, which could be used without further purification. R_{f} ('BuOMe/petroleum ether 2:1) 0.06. $[\alpha]_{\mathrm{D}}=-3.54\left(c=1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) \cdot{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.50-1.85(m, 2 \mathrm{H}-\mathrm{C}(4), 2 \mathrm{H}-\mathrm{C}(6)) ; 1.60(d, J=$ 6.1, 3 H-C (10)); 2.00-2.10 ($m, 2 \mathrm{H}-\mathrm{C}(7)$); 1.97-2.28 ($m, 2 \mathrm{H}-\mathrm{C}(2)$); $3.00\left(s, \mathrm{MeSO}_{2}\right) ; 3.02\left(s, \mathrm{MeSO}_{2}\right) ; 3.10$ $\left(s, \mathrm{MeSO}_{2}\right) ; 3.55(m, 1 \mathrm{H}-\mathrm{C}(5)) ; 4.28-4.37(m, 2 \mathrm{H}-\mathrm{C}(1)) ; 4.63(d, J=8.6, \mathrm{NH}) ; 5.03(m, 1 \mathrm{H}-\mathrm{C}(3)) ; 5.30-$ $5.50(m, \mathrm{H}-\mathrm{C}(8), \mathrm{H}-\mathrm{C}(9)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.8(q, \mathrm{C}(10)) ; 28.6(t, \mathrm{C}(7)) ; 33.6(t, \mathrm{C}(6)) ; 35.3$ $(t, \mathrm{C}(2)) ; 37.3\left(q, \mathrm{MeSO}_{3}\right) ; 38.4\left(q, \mathrm{MeSO}_{3}\right) ; 41.2(t, \mathrm{C}(4)) ; 41.9\left(q, \mathrm{MeSO}_{2} \mathrm{~N}\right) ; 50.6(d, \mathrm{C}(5)) ; 65.4(t, \mathrm{C}(1)) ; 76.2$ (d, C(3)); $126.3(d, \mathrm{C}(9)) ; 129.3(d, \mathrm{C}(8))$. Anal. calc. for $\mathrm{C}_{13} \mathrm{H}_{27} \mathrm{NO}_{8} \mathrm{~S}_{3}: \mathrm{C} 37.04, \mathrm{H} 6.46$; found: C 36.33, H 6.06.

As described for 16a, 16b was obtained from 13b. R_{f} ('BuOMe/petroleum ether 2:1) 0.14. $[\alpha]_{\mathrm{D}}=+8.76$ ($c=$ $1, \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$): $1.45-1.80(m, 2 \mathrm{H}-\mathrm{C}(4), 2 \mathrm{H}-\mathrm{C}(6)) ; 1.65-1.93(m, 2 \mathrm{H}-\mathrm{C}(2))$; $1.70(d, J=5.5,3 \mathrm{H}-\mathrm{C}(10)) ; 2.09-2.16(m, 2 \mathrm{H}-\mathrm{C}(7)) ; 3.04\left(s, \mathrm{MeSO}_{2}\right) ; 3.08\left(s, \mathrm{MeSO}_{2}\right) ; 3.12\left(s, \mathrm{MeSO}_{2}\right) ; 3.70$ $(m, 1 \mathrm{H}-\mathrm{C}(5)) ; 4.12-4.22(m, 2 \mathrm{H}-\mathrm{C}(1)) ; 4.41(d, J=8.0, \mathrm{NH}) ; 4.91(m, 1 \mathrm{H}-\mathrm{C}(3)) ; 5.68-5.79(m, \mathrm{H}-\mathrm{C}(8)$, $\mathrm{H}-\mathrm{C}(9)) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.8(q, \mathrm{C}(10)) ; 28.5(t, \mathrm{C}(7)) ; 34.8(t, \mathrm{C}(6)) ; 35.4(t, \mathrm{C}(2)) ; 37.3$ $\left(q, \mathrm{MeSO}_{3}\right) ; 38.5\left(q, \mathrm{MeSO}_{3}\right) ; 40.1(t, \mathrm{C}(4)) ; 42.3\left(q, \mathrm{MeSO}_{2} \mathrm{~N}\right) ; 50.7(d, \mathrm{C}(5)) ; 65.6(t, \mathrm{C}(1)) ; 76.1(d, \mathrm{C}(3))$; 126.4 ($d, \mathrm{C}(9)) ; 129.4$ (d, C(8)).
$(+)-(2 \mathrm{R}, 4 \mathrm{~S}, 3 \mathrm{E})-$ and $(-)-(2 \mathrm{~S}, 4 \mathrm{~S}, 3 \mathrm{E})-$ Methanesulfonic Acid 1-(Methylsulfonyl)-2-(pent-3-enyl)piperidin-4yl Ester (17a and 17b, resp.). A soln. of 16a ($505 \mathrm{mg}, 1.22 \mathrm{mmol}$) and DBU (4 ml) in anh. THF (42 ml) was stirred for 12 h at r.t. $\mathrm{H}_{2} \mathrm{O}$ was added and the mixture extracted with AcOEt . The org. layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated and the residue chromatographed (AcOEt/petroleum ether/i-PrOH 1:5:0.25): 390 mg (98%) of 17a. $R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{petroleum}\right.$ ether/i-PrOH 1:4:0.25) 0.16. $[\alpha]_{\mathrm{D}}=-8.5(c=1, \mathrm{MeOH})$. IR $\left(\mathrm{CHCl}_{3}\right): 3031$ (27.8), 3026 (28.4), 2939 (35.6), 1457 (48.6), 1336 (0.4), 1205 (17.3), 1176 (0.9), 1148 (4.1), 941 (0.0), 851 (25.0), 812 (44.5). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.65\left(d d, J=6.0,1.0,3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.68-1.76\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right)$; $1.80\left(d d m, J=11.5,5,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 1.88\left(d d d, J=12,11.5,5.5,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 2.05\left(t d, J=7,6.5,2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; 2.11-2.20 (ddmp, $J=15,2.5,2 \mathrm{H}-\mathrm{C}(5)) ; 2.90\left(s, \mathrm{MeSO}_{2}\right) ; 3.03\left(s, \mathrm{MeSO}_{2}\right) ; 3.10(d d d, J=15,15,2.5$, $\left.1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right)$; $3.87\left(d m, J=15,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.15\left(d d m, J=5.5,5,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 4.92$ (dddd, $J=11.5,11.5$, $\left.4.5,4.5,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 5.39\left(d q t, J=15.5,6.5,1 \mathrm{H}-\mathrm{C}\left(3^{\prime}\right)\right) ; 5.48\left(d q, J=15.5,6,1 \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(50 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 17.8\left(q, \mathrm{C}\left(5^{\prime}\right)\right) ; 29.2\left(t, \mathrm{C}\left(2^{\prime}\right)\right) ; 30.7\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 32.3(t, \mathrm{C}(5)) ; 35.2(t, \mathrm{C}(3)) ; 38.7$ ($\left.t, \mathrm{C}(6)\right) ; 38.9$ $\left(q, \mathrm{MeSO}_{3}\right) ; 40.9\left(q, \mathrm{MeSO}_{2} \mathrm{~N}\right) ; 52.8(d, \mathrm{C}(2)) ; 74.8(d, \mathrm{C}(4)) ; 126.4\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 129.2\left(d, \mathrm{C}\left(3^{\prime}\right)\right) . \mathrm{MS}\left(85^{\circ}\right): 325$ $\left(1.3, M^{+}\right), 310\left(0.6,[M-\mathrm{Me}]^{+}\right), 256\left(13,\left[M-\mathrm{C}_{5} \mathrm{H}_{9}\right]^{+}\right), 230\left(11,[M-\mathrm{OMes}]^{+}\right), 189\left(2,\left[230-\mathrm{C}_{3} \mathrm{H}_{5}\right]^{+}\right), 161$ $\left(42,\left[189-\mathrm{C}_{2} \mathrm{H}_{4}\right]^{+}\right), 160\left(100,[161-\mathrm{H}]^{+}\right), 82\left(78,[161-\mathrm{Mes}]^{+}\right), 55\left(65, \mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}\right)$. HR-MS: 325.1018 $\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}_{2}^{+}\right.$; calc. 325.1018). Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}_{2}$: C 44.29, H 7.12; found: C 44.25, H 7.20.

As described for 17a, 17b was obtained from 16b. R_{f} ($\mathrm{AcOEt} /$ petroleum ether/i-PrOH 1:4:0.25) 0.10. $[\alpha]_{\mathrm{D}}=+10.7 \quad(c=1, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \quad \mathrm{CDCl}_{3}\right): 1.65 \quad\left(d, J=4.6,3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; \quad 1.72-2.16$ ($m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), 2 \mathrm{H}-\mathrm{C}(3), 2 \mathrm{H}-\mathrm{C}(5)$); 2.91 (s, MeSO_{2}); 3.04 (s, MeSO_{2}); 3.35 ($d d d, J=4.0$, $\left.11.5,15.4,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.68\left(d m, J=15.4,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.02\left(d d d d, J=6.9,6.9,6.9,6.9,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 5.10$ (dddd, $\left.J=3.0,3.0,3.0,3.0,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 5.34-5.54\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $18.0\left(q, \mathrm{C}\left(5^{\prime}\right)\right) ; 29.8\left(t, \mathrm{C}\left(2^{\prime}\right)\right) ; 30.6\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 32.3(t, \mathrm{C}(5)) ; 32.7(t, \mathrm{C}(3)) ; 35.2(t, \mathrm{C}(6)) ; 38.6\left(q, \mathrm{MeSO}_{3}\right) ; 40.8$ ($\left.q, \mathrm{MeSO}_{2} \mathrm{~N}\right) ; 51.1(d, \mathrm{C}(2)) ; 75.4(d, \mathrm{C}(4)) ; 126.2\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 129.7\left(d, \mathrm{C}\left(3^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}_{2}$: C 44.29, H 7.12; found: C 44.31, H 7.57.
$(+)-(2 \mathrm{R}, 4 \mathrm{~S}, 3 \mathrm{E})$ - and $(-)-(2 \mathrm{~S}, 4 \mathrm{~S}, 8 \mathrm{E})-1-($ Methylsulfonyl)-2-(pent-3-enyl)piperidin-4-ol (18a and 18b, resp.). Method 1: Using compound 15a, structure 18a could be obtained as described for 17a. Method 2: A 70\% suspension of SMAH in toluene (400 mg) was dried under high vacuum. Under Ar, the residue was dissolved in anh. diglyme $(1.5 \mathrm{ml})$. To this soln., 17a ($50 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added, and the mixture was stirred for 2 h at 60°. Then $\mathrm{Na}_{2} \mathrm{SO}_{4}$ soln. was added and the precipitate filtered off, washed with sat. NaCl soln., and extracted with AcOEt. Drying $\left(\mathrm{MgSO}_{4}\right)$ and evaporation gave a residue which was purified by CC (silica gel, $\mathrm{AcOEt} / \mathrm{MeOH} /$ $\left.\mathrm{NH}_{3} 6: 1: 0.1\right): 27 \mathrm{mg}(72 \%)$ of 18a. $R_{\mathrm{f}} 0.57\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 20: 1\right) .[\alpha]_{\mathrm{D}}=-34.29(c=16.5 \mathrm{mg} / \mathrm{ml}$, MeOH $)$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.62-1.68\left(m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), 2 \mathrm{H}-\mathrm{C}(5)\right) ; 1.65\left(d m, J=4.7,3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.92-2.08$ $\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right), 2 \mathrm{H}-\mathrm{C}(3)\right) ; 2.90\left(s, \mathrm{MeSO}_{2}\right) ; 3.08\left(d d d, J=2.0,13.3,15.4,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.83(d d d, J=2.0,4.1$, $\left.15.4,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right)$; 3.95 ($\left.d d d d, J=4.5,4.5,11.3,11.3,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right)$; 4.10 ($d d d d, J=6.2,6.2,6.2,6.2$, $\left.1 \mathrm{H}_{\text {eq }}-\mathrm{C}(4)\right) ; 5.36-5.55\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.8\left(q, \mathrm{C}\left(5^{\prime}\right)\right) ; 29.4$ $\left(t, \mathrm{C}\left(2^{\prime}\right)\right) ; 30.9\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 34.7(t, \mathrm{C}(5)) ; 37.6(t, \mathrm{C}(3)) ; 39.1(t, \mathrm{C}(6)) ; 40.8\left(q, \mathrm{MeSO}_{2} \mathrm{~N}\right) ; 53.1$ (d, C(2)); 64.5 ($d, \mathrm{C}(4)$); $126.1\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 129.9\left(d, \mathrm{C}\left(3^{\prime}\right)\right)$. MS ($\left.120^{\circ}\right): 247\left(0.6, M^{+}\right), 178\left(100.0,\left[M-\mathrm{C}_{5} \mathrm{H}_{9}\right]^{+}\right), 160(10$, $\left[178-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 134\left(50,\left[M-\mathrm{Mes}-\mathrm{H}_{2} \mathrm{O}-\mathrm{Me}\right]^{+}\right)$, $55\left(44, \mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}\right)$. HR-MS: $247.1242\left(\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}^{+}\right.$, calc. 247.1242). Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$: C 53.41, H 8.56; found: C 53.19, H 8.47.

As described for 18a, 18b was obtained from 17b. $R_{\mathrm{f}}\left(\right.$ AcOEt/hexane 1:1) $0.45 \cdot[\alpha]_{\mathrm{D}}=+17.76(c=13 \mathrm{mg} /$ $\mathrm{ml}, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.54-1.67\left(d m, J=14.0,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(5)\right) ; 1.64\left(d, J=6.0,3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right)$;
1.67-1.80 ($\left.m, 2 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right)\right) ; 1.86\left(d d d, J=5.5,12.0,12.0,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(3)\right) ; 2.02\left(d d d, J=7.0,7.0,7.0,2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; $2.10-2.20\left(d m, J=12.0,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(3)\right) ; 2.10-2.20\left(d m, J=2.5,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(5)\right) ; 2.89\left(s, \mathrm{MeSO}_{2}\right) ; 3.02(\mathrm{OH}) ; 3.10$ $\left(d d d, J=2.5,14.0,14.0,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.88\left(d m, J=14.0,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 4.15(d d d d, J=5.5,5.5,5.5,<5.5$, $\left.1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(2)\right) ; 4.90\left(d d d m, J=4.5,4.5,12.0,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 5.35-5.52\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($50 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $17.8\left(q, \mathrm{C}\left(5^{\prime}\right)\right) ; 29.2\left(t, \mathrm{C}\left(2^{\prime}\right)\right) ; 30.7\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 32.3(t, \mathrm{C}(5)) ; 35.2(t, \mathrm{C}(3)) ; 38.7(t, \mathrm{C}(6)) ; 40.8$ $\left(q, \mathrm{MeSO}_{2}\right) ; 52.8(d, \mathrm{C}(2)) ; 74.7(d, \mathrm{C}(4)) ; 126.4\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 129.2\left(d, \mathrm{C}\left(3^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}$: C 53.41, H 8.56; found: C 53.26, H 8.53.
$(+)-(2 \mathrm{R}, 4 \mathrm{~S}, 3 \mathrm{E})-$ and $(-)-(2 \mathrm{~S}, 4 \mathrm{~S}, 3 \mathrm{E})-2-($ Pent-3-enyl $)$ piperidin-4-ol (19a and 19b, resp.). The procedure for the preparation of $\mathbf{1 9 a}$ was similar to the preparation of $\mathbf{1 8 a}: \mathbf{1 7 a}(737 \mathrm{mg}, 2.3 \mathrm{mmol})$ was treated with SMAH $(5.9 \mathrm{~g})$ in anh. diglyme $(15 \mathrm{ml})$ as described. However, the temp. was first kept at 60° for 1 h , then increased to 140° and kept for 12 h . Workup as described for $\mathbf{1 8}$ and $\mathrm{CC}\left(\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{NH}_{3} 5: 1: 0.1\right)$ yielded $289 \mathrm{mg}(75 \%)$ of 19a. $R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{NH}_{3} 5: 1: 0.1\right) 0.08 .[\alpha]_{\mathrm{D}}=-2.24(c=25 \mathrm{mg} / \mathrm{ml}, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): 1.48-1.65\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), \quad 1 \mathrm{H}-\mathrm{C}(3), \quad 1 \mathrm{H}-\mathrm{C}(5)\right) ; 1.65 \quad\left(d, J=4.9,3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.68-1.77$ $\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), 1 \mathrm{H}-\mathrm{C}(3), 1 \mathrm{H}-\mathrm{C}(5)\right) ; 1.95-2.20\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right) ; 2.30-2.60$ (br., 2 H); 2.86 (ddd, J=3.0, 4.6, 12.2, $\left.1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 2.94\left(d d d d, J=2.8,6.4,6.4,10.0,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 3.04(d d d, J=3.1,12.2,12.2$, $\left.1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 4.14\left(d d d d, J=3.1,3.1,3.1,3.1,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(4)\right) ; 5.37-5.49\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(50 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.9\left(q, \mathrm{C}\left(5^{\prime}\right)\right) ; 29.0\left(t, \mathrm{C}\left(2^{\prime}\right)\right) ; 33.3\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 36.4(t, \mathrm{C}(5)) ; 39.5(t, \mathrm{C}(6)) ; 40.7(t, \mathrm{C}(3)) ; 50.1$ $(d, \mathrm{C}(2)) ; 64.8(d, \mathrm{C}(4)) ; 125.2\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 130.8\left(d, \mathrm{C}\left(3^{\prime}\right)\right) . \mathrm{MS}\left(100^{\circ}\right): 169\left(7, M^{+}\right), 167\left(10,\left[M-\mathrm{H}_{2}\right]^{+}\right), 152(7$, $\left.[M-\mathrm{OH}]^{+}\right), 149\left(34,\left[167-\mathrm{H}_{2} \mathrm{O}\right]^{+}\right), 140\left(23,[167-\mathrm{HCN}]^{+}\right), 126\left(10,\left[140-\mathrm{CH}_{2}\right]^{+}\right), 113\left(20,\left[M-\mathrm{C}_{4} \mathrm{H}_{7}\right]^{+}\right)$, $100\left(100,\left[M-\mathrm{C}_{5} \mathrm{H}_{9}\right]^{+}\right), 97\left(8, \mathrm{C}_{6} \mathrm{H}_{11} \mathrm{~N}^{+},\left[M-\mathrm{H}_{2} \mathrm{O} \text { and retro-Diels-Alder }\right]^{+}\right), 82\left(20,\left[100-\mathrm{H}_{2} \mathrm{O}^{+}\right), 69(15\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{9}\right)^{+}, 56\left(41,\left[97-\mathrm{C}_{3} \mathrm{H}_{5}\right]^{+}\right), 55\left(32, \mathrm{C}_{4} \mathrm{H}_{7}{ }^{+}\right)$. HR-MS: $169.1467\left(\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}^{+}\right.$; calc. 169.1467). Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}$: C 70.96, H 11.31; found: C 70.43, H 11.11.

As described for 19a, 19b was obtained from 17b. $R_{\mathrm{f}}\left(\mathrm{AcOEt} / \mathrm{MeOH} / \mathrm{NH}_{3} 5: 1: 0.1\right) 0.24 .[\alpha]_{\mathrm{D}}=+7.3(c=$ $25 \mathrm{mg} / \mathrm{ml}, \mathrm{MeOH}) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 1.30-1.50\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), 1 \mathrm{H}-\mathrm{C}(5)\right) ; 1.65(d d, J=1.0,5.5$, $\left.3 \mathrm{H}-\mathrm{C}\left(5^{\prime}\right)\right) ; 1.60-1.80\left(m, 1 \mathrm{H}-\mathrm{C}\left(1^{\prime}\right), 1 \mathrm{H}-\mathrm{C}(5)\right) ; 1.90-2.00(m, 2 \mathrm{H}-\mathrm{C}(3)) ; 2.00-2.10\left(m, 2 \mathrm{H}-\mathrm{C}\left(2^{\prime}\right)\right)$; $2.51\left(d d d d, J=2.4,7.2,7.2,12.0,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(2)\right) ; 2.62\left(d d d, J=2.5,12.5,12.5,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(6)\right) ; 3.12(d d d, J=2.7,4.6$, $\left.12.5,1 \mathrm{H}_{\mathrm{eq}}-\mathrm{C}(6)\right) ; 3.64\left(d d d d, J=4.5,4.5,11.0,11.0,1 \mathrm{H}_{\mathrm{ax}}-\mathrm{C}(4)\right) ; 5.40-5.46\left(m, \mathrm{H}-\mathrm{C}\left(3^{\prime}\right), \mathrm{H}-\mathrm{C}\left(4^{\prime}\right)\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 17.9\left(q, \mathrm{C}\left(5^{\prime}\right)\right) ; 29.0\left(t, \mathrm{C}\left(2^{\prime}\right)\right) ; 36.2\left(t, \mathrm{C}\left(1^{\prime}\right)\right) ; 36.7(t, \mathrm{C}(5)) ; 42.5(t, \mathrm{C}(6)) ; 44.7$ $(t, \mathrm{C}(3))$; $54.8(d, \mathrm{C}(2)) ; 69.3(d, \mathrm{C}(4)) ; 125.2\left(d, \mathrm{C}\left(4^{\prime}\right)\right) ; 130.8\left(d, \mathrm{C}\left(3^{\prime}\right)\right)$. Anal. calc. for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}: \mathrm{C} 70.96$, H 11.31; found: C 70.81, H 11.24.

REFERENCES

[1] a) D. Niederer, U. Sequin, Helv. Chim. Acta 1990, 73, 2129; b) S. Grabley, P. Hammann, H. Kluge, J. Wink, J. Antibiot. 1991, 44, 797.
[2] Y. Romeyke, M. Keller, H. Kluge, S. Grabley, P. Hammann, Tetrahedron 1991, 47, 3335; W. KellerSchierlein, D. Wuthier, Helv. Chim. Acta 1983, 66, 1253; T. Takeuchi, M. Ishizuka, H. Otai, M. Hamada, Jpn. Kokai Tokkyo Koho 1989; A. Arnone, R. Cardillo, G. Nasini, O. Vajna de Pava, S. Quaroni, Phytochemistry 1988, 27, 3611.
[3] M. Mayer, R. Thiericke, J. Org. Chem. 1993, 58, 3486.
[4] W. Oppolzer, S. Siles, R. Snowden, B. Bakker, M. Petrzilka, Tetrahedron 1985, 41, 3497.
[5] H. Hayashi, K. Nakanishi, C. Brandon, J. Marmur, J. Am. Chem. Soc. 1973, 95, 8749; L. Borjesson, C. Welch, Tetrahedron 1992, 48, 6325.
[6] R. Di Fabio, Gazz. Chim. Ital. 1988, 118, 209.
[7] S. Torii, K. Uneyama, M. Isihara, J. Org. Chem. 1974, 39, 3645 ; B. Jones, R. Grayshan, J. Chem. Soc., Chem. Commии. 1970, 741.
[8] D. Seebach, E. Corey, J. Org. Chem. 1975, 40, 231.
[9] E. Corey, B. Erickson, J. Org. Chem. 1971, 36, 3553.
[10] E. Fujita, Y. Nagao, K. Kaneko, Chem. Pharm. Bull. 1978, 26, 3743.
[11] W. Keller-Schierlein, D. Wuthier, Helv. Chim. Acta 1983, 66, 1253.
[12] D. Ryckman, R. Stevens, J. Org. Chem. 1987, 52, 4274; R. Williams, P. Ehrlich, W. Zhai, J. Hendrix, ibid. 1987, 52, 2616; R. Danheiser, J. Morin, E. Salaski, J. Am. Chem. Soc. 1985, 107, 8066.
[13] G. Hawkes, K. Herwig, J. Roberts, J. Org. Chem. 1974, 39, 1017; H. Kalinowski, S. Berger, S. Braun, ${ }^{13}$ C-NMR Spektroskopie', Thieme Verlag, Stuttgart-New York, 1984.
[14] D. Williams, M. Osterhout, J. Am. Chem. Soc. 1992, 114, 8750.

[^0]: a) $\mathrm{R}=\mathrm{MeCH}=\mathrm{CHCH}_{2} \mathrm{CH}_{2}$.

[^1]: ${ }^{1}$) Data of the more abundant diastereoisomer, else sum of the overlapped signals.

